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1. Basic ramification theory

In this section L/K is a �nite Galois extension of number �elds of degree n. The
Galois group Gal(L/K) acts on various invariants of L, for instance the group of
fractional ideals IL and the class group Cl(L). If P is a prime of L above p of K,
then any element of Gal(L/K) sends P to another prime above p. We have

Proposition 1.1. Let L/K be a �nite Galois extension of number �elds. Then for

any prime p of K, the Galois group Gal(L/K) acts transitively on the set {Pi}1≤i≤g
of primes of L above p. In particular, the inertia degrees fi are the same, denoted

by f = f(p, L/K), and by unique factorization, the rami�cation degrees ei are the

same, denoted by e = e(p, L/K). The fundamental identity reduces to

efg = n.

Let P be a prime of L above a prime p of K. Let e, f, g be as above.

De�nition 1.2. The stabilizer of P in Gal(L/K) is called the decomposition group

of B, denoted by D(P). The corresponding sub�eld LD(P) of L is called the
decomposition �eld, denoted by ZP.

Remark 1.3. For σ ∈ Gal(L/K), D(σP) = σD(P)σ−1 and ZσP = σ(ZP).

The group P is the stabilizer in a group of order n on an orbit of cardinality g,
so its order is n/g = ef . Let PZ be the prime of ZP lying under P. The Galois
group of L/ZP is D(P), and it should act transitively on the primes of L above
PZ . This shows that P is the only prime of L above PZ .

Proposition 1.4. e(P/PZ) = e(P/p), f(P/PZ) = f(P/p), e(PZ/p) = f(PZ/p) =
1.

Proof. We have e(P/PZ)e(PZ/p) = e(P/p) and f(P/PZ)f(PZ/p) = f(P/p) be-
cause the functions e(·), f(·) are certainly multiplicative in the suitable sense. But
by the fundamental identity applied to the extension L/ZP which is of degree
e(P/p)f(P/p), we have e(P/PZ)f(P/PZ) = e(P/p)f(P/p). �

The decomposition group D(P) acts on the residue �eld OL/P, and the action
is trivial on the sub�eld OK/p, so we get a homomorphism

D(P)→ Gal(κ(P)/κ(p)).

Lemma 1.5. The above homomorphism is surjective.

De�nition 1.6. We call the kernel of the above homomorphism the inertia group

of P, denoted by I(P). Its �xed �eld is called the inertia �eld of P and denoted
by TP.
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Remark 1.7. The order of I(P) is equal to ef/f = e. Hence p is unrami�ed in L if
and only if I(P) = 1.

In summary, we have a chain of groups Gal(L/K) ⊃ D(P) ⊃ I(P), correspond-
ing to a chain of �elds K ⊂ ZP ⊂ TP ⊂ L. Let PZ ,PT be the primes of ZP and
TP under P respectively.

• In the extension ZP/K, which might not be Galois, we have κ(PZ) = κ(p)
and PZ is unrami�ed over p.

• The extension ZP ⊂ TP is Galois with Galois group naturally isomorphic
to Gal(κ(P)/κ(p)). The prime PZ stays inert in the extension TP/ZP,
namely PT = PZOTP

.
• In the extension L/TP, the prime PT factorizes as Pe in L, with no residue
extension, i.e. κ(P) = κ(PT ).

De�nition 1.8. Suppose p is a prime of K unrami�ed in L. For each prime P
of L above p, de�ne the element FrobP/p ∈ Gal(L/K) to be the preimage of the

Frobenius element x 7→ x|κ(p)| under the isomorphism D(P) → Gal(κ(P)/κ(p)).
When P varies, the elements FrobP/p form a conjugacy class of Gal(L/K), denoted
by Frobp = (p, L/K), called the Frobenius conjugacy class or the Artin symbol.

Remark 1.9. By de�nition, FrobP/p is the unique element σ ∈ Gal(L/K) charac-
terized by the following property: For any x ∈ OL,

σx ≡ x|κ(p)| mod P, i.e. σx− x|κ(p)| ∈ P.

Remark 1.10. When L/K is abelian, the Frobenius conjugacy class becomes an
element.

2. Unramified class field theory

De�nition 2.1. Let v be a real embedding of K. We say v is unrami�ed in L if v
extends to a real embedding of L (rather than a complex embedding).

Example 2.2. The real embedding of Q is unrami�ed in Q(
√

2), but rami�ed in
Q(
√
−2).

De�nition 2.3. We say L/K is unrami�ed everywhere or simply unrami�ed if any
prime ideal of K is unrami�ed in L, and any real embedding of K is unrami�ed in
L.

The following theorem is an important special case of class �eld theory.

Theorem 2.4 (Unrami�ed Class Field Theory). Let K be a number �eld. Fix

an algebraic closure K̄ of K. Inside K̄ there exists a �nite extension H/K that

is abelian and unrami�ed, such that any abelian and unrami�ed extension of K
contained in K̄ is contained in L. Moreover, the map

IK → Gal(H/K), p 7→ (p, H/K)

induces an isomorphism

Cl(K)
∼−→ Gal(H/K).

The �eld H is called the Hilbert class �eld of K.

Remark 2.5. A priori it may happen thatK had arbitrarily large abelian unrami�ed
extensions, and in that case there would not be a maximal one.
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Example 2.6. If hK = 1 then H = K. In particular Q has no abelian unrami�ed
extension. In fact Q does not admit any unrami�ed extension.

Example 2.7. The Hilbert class �eld of K = Q(
√
−14) is K(

√
2
√

2− 1). To show

this, one �rst checks that K(
√

2
√

2− 1)/K is a degree 4 abelian extension unrami-
�ed everywhere. Next the class number of K can be computed (e.g. using the class

number formula) to be 4. These two things imply that K(
√

2
√

2− 1) is indeed the
Hilbert class �eld of K.

Corollary 2.8. Let H be the Hilbert class �eld of K. Then a prime p of K is split

in H if and only if p is principal.

Proof. Since p is unrami�ed, from the fundamental identity n = fg we see that p
is split if and only if f = 1. But f = 1 means (p, H/K) = 1. �

Theorem 2.9 (Artin's principal ideal theorem). Let H be the Hilbert class �eld of

K. Let a be a fractional ideal of K. Then aOH is a principal fractional ideal of H.

Example 2.10. Using the last theorem, we can deduce the following statement: Let
f(X) = (X2 + 1)2 − 8. A prime number p is of the form p = x2 + 14y2, x, y ∈ Z, if
and only if

(
−14

p
) = 1,&∃x ∈ Z, f(x) ≡ 0 mod p(*)

To prove this, let K = Q(
√
−14) and H be the Hilbert class �eld of K. By the

previous example, we know H = K(α) where α has minimal polynomial f(X) over
Q. It is not hard to show that the condition (∗) is equivalent to the condition that
p is split in H. But we have p = x2 + 14y2 ⇔ pOK = pp̄ with p a principal prime
ideal of OK , ⇔ pOK = pp̄ with p a prime ideal of OK that is split in H, ⇔ p is
split in H.

If we want to generalize the last example to study p = x2 +ny2, n ≥ 1, we would
like to �nd explicit generators of the Hilbert class �eld of K = Q(

√
−n). In fact

for general n, there is no reason to hope that Z[
√
−n] = OK , (e.g. n = 9), and

when Z[
√
−n] 6= OK , we indeed need to look at abelian extensions of K other than

the Hilbert class �eld, and to try to �nd their generators. The theory of complex
multiplication, the main theme of the tutorial, provides a systematic way of doing
that.

When we start to talk about complex multiplication, the �rst goal will be to
generate the Hilbert class �eld of an imaginary quadratic �eld using special values
of a holomorphic function called j, de�ned on the upper half plane {z ∈ C|=z > 0}.
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