LECTURE 4

YIHANG ZHU

1. BASIC RAMIFICATION THEORY

In this section L/K is a finite Galois extension of number fields of degree n. The
Galois group Gal(L/K) acts on various invariants of L, for instance the group of
fractional ideals I, and the class group CI(L). If 3 is a prime of L above p of K,
then any element of Gal(L/K) sends P to another prime above p. We have

Proposition 1.1. Let L/K be a finite Galois extension of number fields. Then for
any prime p of K, the Galois group Gal(L/K) acts transitively on the set {Pi}, <,
of primes of L above p. In particular, the inertia degrees f; are the same, denoted
by f = f(p,L/K), and by unique factorization, the ramification degrees e; are the
same, denoted by e = e(p, L/K). The fundamental identity reduces to

efg=n.
Let 3 be a prime of L above a prime p of K. Let e, f,g be as above.

Definition 1.2. The stabilizer of 8 in Gal(L/K) is called the decomnposition group
of B, denoted by D(P). The corresponding subfield LP™) of L is called the
decomposition field, denoted by Zg.

Remark 1.3. For o € Gal(L/K), D(0'B) = cD(R)o ! and Z,p = o(Zy).

The group ‘B is the stabilizer in a group of order n on an orbit of cardinality g,
so its order is n/g = ef. Let Pz be the prime of Zy lying under 4B. The Galois
group of L/Zy is D(), and it should act transitively on the primes of L above
B. This shows that B is the only prime of L above .

Proposition 1.4. ¢(P/Bz) = e(B/p), f(B/Bz) = f(B/p), e(Bz/p) = [(Bz/p) =
1.

Proof. We have e(B/PBz)e(Pz/p) = e(B/p) and f(B/Bz)f(Bz/p) = F(B/p) be-

cause the functions e(-), f(-) are certainly multiplicative in the suitable sense. But
by the fundamental identity applied to the extension L/Zy which is of degree

e(B/p)f(B/p), we have e(B/B2)f(B/Bz) = e(B/p)f(B/p)- 0

The decomposition group D(*B) acts on the residue field Or /B, and the action
is trivial on the subfield Ok /p, so we get a homomorphism

D(PB) — Gal(x(B)/r(p))-
Lemma 1.5. The above homomorphism is surjective.

Definition 1.6. We call the kernel of the above homomorphism the inertia group
of B, denoted by I(B). Its fixed field is called the inertia field of P and denoted
by Ts;p.
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Remark 1.7. The order of 1(*B) is equal to ef/f = e. Hence p is unramified in L if
and only if I() = 1.

In summary, we have a chain of groups Gal(L/K) D D() D I(), correspond-
ing to a chain of fields K C Zp C Tip C L. Let Bz, P be the primes of Zy and
T under P respectively.

e In the extension Zy /K, which might not be Galois, we have x(Bz) = k(p)
and Pz is unramified over p.

e The extension Zy C Tip is Galois with Galois group naturally isomorphic
to Gal(k(P)/k(p)). The prime P stays inert in the extension Ty /Zsy,

namely qu = mZC’)T\p -
e In the extension L/Tiy, the prime Py factorizes as B¢ in L, with no residue

extension, i.e. K(P) = £ (Pr).
Definition 1.8. Suppose p is a prime of K unramified in L. For each prime 3
of L above p, define the element Froby,, € Gal(L/K) to be the preimage of the
Frobenius element x ~ z!/*(®)| under the isomorphism D(B) — Gal(k(B)/x(p))-
When ‘B varies, the elements Froby /, form a conjugacy class of Gal(L/K), denoted
by Frob, = (p, L/K), called the Frobenius conjugacy class or the Artin symbol.

Remark 1.9. By definition, Froby, is the unique element o € Gal(L/K) charac-
terized by the following property: For any = € Oy,

ox = z"®1 mod P, ie. oz — z!"®) e p.

Remark 1.10. When L/K is abelian, the Frobenius conjugacy class becomes an
element.

2. UNRAMIFIED CLASS FIELD THEORY

Definition 2.1. Let v be a real embedding of K. We say v is unramified in L if v
extends to a real embedding of L (rather than a complex embedding).

Ezample 2.2. The real embedding of Q is unramified in Q(v/2), but ramified in
Q(v=2).

Definition 2.3. We say L/K is unramified everywhere or simply unramified if any
prime ideal of K is unramified in L, and any real embedding of K is unramified in
L.

The following theorem is an important special case of class field theory.

Theorem 2.4 (Unramified Class Field Theory). Let K be a number field. Fix
an algebraic closure K of K. Inside K there exists a finite extension H/K that
is abelian and unramified, such that any abelian and unramified extension of K
contained in K is contained in L. Moreover, the map

induces an isomorphism
Cl(K) = Gal(H/K).
The field H is called the Hilbert class field of K.

Remark 2.5. A priori it may happen that K had arbitrarily large abelian unramified
extensions, and in that case there would not be a maximal one.



LECTURE 4 3

Ezample 2.6. If hg = 1 then H = K. In particular Q has no abelian unramified
extension. In fact Q does not admit any unramified extension.

Ezample 2.7. The Hilbert class field of K = Q(v/—14) is K(1/2v/2 —1). To show

this, one first checks that K (1/2v/2 — 1)/K is a degree 4 abelian extension unrami-
fied everywhere. Next the class number of K can be computed (e.g. using the class

number formula) to be 4. These two things imply that K (1/2v/2 — 1) is indeed the
Hilbert class field of K.

Corollary 2.8. Let H be the Hilbert class field of K. Then a prime p of K is split
in H if and only if p is principal.

Proof. Since p is unramified, from the fundamental identity n = fg we see that p
is split if and only if f = 1. But f =1 means (p, H/K) = 1. d

Theorem 2.9 (Artin’s principal ideal theorem). Let H be the Hilbert class field of
K. Let a be a fractional ideal of K. Then aOp is a principal fractional ideal of H.

Example 2.10. Using the last theorem, we can deduce the following statement: Let
f(X) = (X%+1)? —8. A prime number p is of the form p = 22 + 14y2, 2,y € Z, if
and only if

* (_714) =1,&3x€Z,f(x) =0 modp

To prove this, let K = Q(/—14) and H be the Hilbert class field of K. By the
previous example, we know H = K («) where o has minimal polynomial f(X) over
Q. Tt is not hard to show that the condition (*) is equivalent to the condition that
p is split in H. But we have p = 2% + 14y? < pOg = pp with p a principal prime
ideal of Ok, & pOk = pp with p a prime ideal of Ok that is split in H, < p is
split in H.

If we want to generalize the last example to study p = 22 +ny?,n > 1, we would
like to find explicit generators of the Hilbert class field of K = Q(y/—n). In fact
for general n, there is no reason to hope that Z[\/—n] = Ok, (e.g. n =9), and
when Z[/—n] # Ok, we indeed need to look at abelian extensions of K other than
the Hilbert class field, and to try to find their generators. The theory of complex
multiplication, the main theme of the tutorial, provides a systematic way of doing
that.

When we start to talk about complex multiplication, the first goal will be to
generate the Hilbert class field of an imaginary quadratic field using special values
of a holomorphic function called j, defined on the upper half plane {z € C|Sz > 0}.
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